Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611843

RESUMO

Methotrexate (MTX) has poor water solubility and low bioavailability, and cancer cells can become resistant to it, which limits its safe delivery to tumor sites and reduces its clinical efficacy. Herein, we developed novel redox-responsive hybrid nanoparticles (NPs) from hyaluronic acid (HA) and 3-mercaptopropionic acid (MPA)-coated gold NPs (gold@MPA NPs), which were further conjugated with folic acid (FA). The design of FA-HA-ss-gold NPs aimed at enhancing cellular uptake specifically in cancer cells using an active FA/HA dual targeting strategy for enhanced tumor eradication. MTX was successfully encapsulated into FA-HA-ss-gold NPs, with drug encapsulation efficiency (EE) as high as >98.7%. The physicochemical properties of the NPs were investigated in terms of size, surface charges, wavelength reflectance, and chemical bonds. MTX was released in a sustained manner in glutathione (GSH). The cellular uptake experiments showed effective uptake of FA-HA-ss-gold over HA-ss-gold NPs in the deep tumor. Moreover, the release studies provided strong evidence that FA-HA-ss-gold NPs serve as GSH-responsive carriers. In vitro, anti-tumor activity tests showed that FA-HA-ss-gold/MTX NPs exhibited significantly higher cytotoxic activity against both human cervical cancer (HeLa) cells and breast cancer (BT-20) cells compared to gold only and HA-ss-gold/MTX NPs while being safe for human embryonic kidney (HEK-293) cells. Therefore, this present study suggests that FA-HA-ss-gold NPs are promising active targeting hybrid nanocarriers that are stable, controllable, biocompatible, biodegradable, and with enhanced cancer cell targetability for the safe delivery of hydrophobic anticancer drugs.


Assuntos
Ácido Fólico , Nanopartículas Metálicas , Humanos , Ouro , Ácido Hialurônico , Células HEK293 , Metotrexato/farmacologia , Glutationa
2.
Adv Biol (Weinh) ; : e2300375, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548666

RESUMO

In anti-cancer metastasis treatment, precise drug delivery to cancer cells remains a challenge. Innovative nanocomposites are developed to tackle these issues effectively. The approach involves the creation of manganese oxide (Mn3O4) nanoparticles (NPs) and their functionalization using trisodium citrate to yield functionalized Mn3O4 NPs (F-Mn3O4 NPs), with enhanced water solubility, stability, and biocompatibility. Subsequently, the chemotherapeutic drug doxorubicin (DOX) is encapsulated with Mn3O4 NPs, resulting in DOX/Mn3O4 NPs. To achieve cell-specific targeting, These NPs are coated with HeLa cell membranes (HCM), forming HCM/DOX/Mn3O4. For further refinement, a transferrin (Tf) receptor is integrated with cracked HCM to create Tf-HCM/DOX/Mn3O4 nanocomposites (NC) with specific cell membrane targeting capabilities. The resulting Tf-HCM/DOX/Mn3O4 NC exhibits excellent drug encapsulation efficiency (97.5%) and displays triggered drug release when exposed to NIR laser irradiation in the tumor's environment (pH 5.0 and 6.5). Furthermore, these nanocomposites show resistance to macrophage uptake and demonstrate homotypic cancer cell targeting specificity, even in the presence of other tumor cells. In vitro toxicity tests show that Tf-HCM/DOX/Mn3O4 NC achieves significant anticancer activity against HeLa and BT20 cancer cells, with percentages of 76.46% and 71.36%, respectively. These results indicate the potential of Tf-HCM/DOX/Mn3O4 NC as an effective nanoplatform for chemo-photothermal therapy.

3.
ACS Appl Mater Interfaces ; 16(12): 15322-15335, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470564

RESUMO

Chemotherapy is a conventional treatment that uses drugs to kill cancer cells; however, it may induce side effects and may be incompletely effective, leading to the risk of tumor recurrence. To address this issue, we developed novel injectable thermal/near-infrared (NIR)-responsive hydrogels to control drug release. The injectable hydrogel formulation was composed of biocompatible alginates, poly(N-acryloyl glycinamide) (PNAGA) copolymers with an upper critical solution temperature, and NIR-responsive cross-linkers containing coumarin groups, which were gelated through bioorthogonal inverse electron demand Diels-Alder reactions. The hydrogels exhibited quick gelation times (120-800 s) and high drug loading efficiencies (>90%). The hydrogels demonstrated a higher percentage of drug release at 37 °C than that at 25 °C due to the enhanced swelling behavior of temperature-responsive PNAGA moieties. Upon NIR irradiation, the hydrogels released most of the entrapped doxorubicin (DOX) (97%) owing to the cleavage of NIR-sensitive coumarin ester groups. The hydrogels displayed biocompatibility with normal cells, while induced antitumor activity toward cancer cells. DOX/hydrogels treated with NIR light inhibited tumor growth in nude mice bearing tumors. In addition, the injected hydrogels emitted red fluorescence upon excitation at a green wavelength, so that the drug delivery and hydrogel degradation in vivo could be tracked in the xenograft model.


Assuntos
Resinas Acrílicas , Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Hidrogéis/farmacologia , Alginatos , Camundongos Nus , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Cumarínicos , Liberação Controlada de Fármacos
4.
Int J Biol Macromol ; 260(Pt 2): 129549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246444

RESUMO

Near-infrared (NIR) light-responsive hydrogels have emerged as a highly promising strategy for effective anticancer therapy owing to the remotely controlled release of chemotherapeutic molecules with minimal invasive manner. In this study, novel NIR-responsive hydrogels were developed from reactive oxygen species (ROS)-cleavable thioketal cross-linkers which possessed terminal tetrazine groups to undergo a bio-orthogonal inverse electron demand Diels Alder click reaction with norbornene modified carboxymethyl cellulose. The hydrogels were rapidly formed under physiological conditions and generated N2 gas as a by-product, which led to the formation of porous structures within the hydrogel networks. A NIR dye, indocyanine green (ICG) and chemotherapeutic doxorubicin (DOX) were co-encapsulated in the porous network of the hydrogels. Upon NIR-irradiation, the hydrogels showed spatiotemporal release of encapsulated DOX (>96 %) owing to the cleavage of thioketal bonds by interacting with ROS generated from ICG, whereas minimal release of encapsulated DOX (<25 %) was observed in the absence of NIR-light. The in vitro cytotoxicity results revealed that the hydrogels were highly cytocompatible and did not induce any toxic effect on the HEK-293 cells. In contrast, the DOX + ICG-encapsulated hydrogels enhanced the chemotherapeutic effect and effectively inhibited the proliferation of Hela cancer cells when irradiated with NIR-light.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Espécies Reativas de Oxigênio , Células HEK293 , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/química , Liberação Controlada de Fármacos
5.
Tissue Eng Regen Med ; 21(2): 209-221, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837499

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is characterized by chronic inflammation and joint damage. Methotrexate (MTX), a commonly used disease-modifying anti-rheumatic drug (DMARD) used in RA treatment. However, the continued use of DMARDs can cause adverse effects and result in limited therapeutic efficacy. Cartilage extracellular matrix (CECM) has anti-inflammatory and anti-vascular effects and promotes stem cell migration, adhesion, and differentiation into cartilage cells. METHODS: CECM was assessed the dsDNA, glycosaminoglycan, collagen contents and FT-IR spectrum of CECM. Furthermore, we determined the effects of CECM and MTX on cytocompatibility in the SW 982 cells and RAW 264.7 cells. The anti-inflammatory effects of CECM and MTX were assessed using macrophage cells. Finally, we examined the in vivo effects of CECM in combination with MTX on anti-inflammation control and cartilage degradation in collagen-induced arthritis model. Anti-inflammation control and cartilage degradation were assessed by measuring the serum levels of RA-related cytokines and histology. RESULTS: CECM in combination with MTX had no effect on SW 982, effectively suppressing only RAW 264.7 activity. Moreover, anti-inflammatory effects were enhanced when low-dose MTX was combined with CECM. In a collagen-induced arthritis model, low-dose MTX combined with CECM remarkably reduced RA-related and pro-inflammatory cytokine levels in the blood. Additionally, low-dose MTX combined with CECM exerted the best cartilage-preservation effects compared to those observed in the other therapy groups. CONCLUSION: Using CECM as an adjuvant in RA treatment can augment the therapeutic effects of MTX, reduce existing drug adverse effects, and promote joint tissue regeneration.


Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Animais , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Anti-Inflamatórios , Cartilagem/metabolismo
6.
Gels ; 9(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38131947

RESUMO

Novel chemically cross-linked hydrogels derived from carboxymethyl cellulose (CMC) and alginate (Alg) were prepared through the utilization of the norbornene (Nb)-methyl tetrazine (mTz) click reaction. The hydrogels were designed to generate reactive oxygen species (ROS) from an NIR dye, indocyanine green (ICG), for combined photothermal and photodynamic therapy (PTT/PDT). The cross-linking reaction between Nb and mTz moieties occurred via an inverse electron-demand Diels-Alder chemistry under physiological conditions avoiding the need for a catalyst. The resulting hydrogels exhibited viscoelastic properties (G' ~ 492-270 Pa) and high porosity. The hydrogels were found to be injectable with tunable mechanical characteristics. The ROS production from the ICG-encapsulated hydrogels was confirmed by DPBF assays, indicating a photodynamic effect (with NIR irradiation at 1-2 W for 5-15 min). The temperature of the ICG-loaded hydrogels also increased upon the NIR irradiation to eradicate tumor cells photothermally. In vitro cytocompatibility assessments revealed the non-toxic nature of CMC-Nb and Alg-mTz towards HEK-293 cells. Furthermore, the ICG-loaded hydrogels effectively inhibited the metabolic activity of Hela cells after NIR exposure.

7.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37375788

RESUMO

Selective delivery of anticancer drug molecules to the tumor site enhances local drug dosages, which leads to the death of cancer cells while simultaneously minimizing the negative effects of chemotherapy on other tissues, thereby improving the patient's quality of life. To address this need, we developed reduction-responsive chitosan-based injectable hydrogels via the inverse electron demand Diels-Alder reaction between tetrazine groups of disulfide-based cross-linkers and norbornene groups of chitosan derivatives, which were applied to the controlled delivery of doxorubicin (DOX). The swelling ratio, gelation time (90-500 s), mechanical strength (G'~350-850 Pa), network morphology, and drug-loading efficiency (≥92%) of developed hydrogels were investigated. The in vitro release studies of the DOX-loaded hydrogels were performed at pH 7.4 and 5.0 with and without DTT (10 mM). The biocompatibility of pure hydrogel and the in vitro anticancer activity of DOX-loaded hydrogels were demonstrated via MTT assay on HEK-293 and HT-29 cancer cell lines, respectively.

8.
Ann Biomed Eng ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37204546

RESUMO

Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.

9.
Int J Biol Macromol ; 238: 124285, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004930

RESUMO

In this work, we investigated the effect of the size and the chemical structure of crosslinkers on the properties of hyaluronic acid-based hydrogels prepared via an inverse electron demand Diels-Alder reaction. Hydrogels having loose and dense networks were designed by cross-linkers with and without polyethylene glycol (PEG) spacers of different molecular weights (1000 and 4000 g/mol). The study showed that the properties of hydrogels such as swelling ratios (20-55 times), morphology, stability, mechanical strength (storage modulus in the range 175-858 Pa), and drug loading efficiency (87 % ~ 90 %) were greatly influenced by the addition of PEG and changing its molecular weight in the cross-linker. Particularly, the presence of PEG chains in redox- responsive crosslinkers increased the doxorubicin release (85 %, after 168 h) and the degradation rate (96 %, after 10 d) of hydrogels in the simulated reducing medium (10 mM DTT). The in vitro cytotoxicity experiments conducted for HEK-293 cells revealed that the formulated hydrogels were biocompatible, which could be a promising candidate for drug delivery applications.


Assuntos
Ácido Hialurônico , Hidrogéis , Humanos , Ácido Hialurônico/química , Peso Molecular , Hidrogéis/química , Células HEK293 , Polietilenoglicóis/química , Oxirredução
10.
Pharmaceutics ; 15(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111644

RESUMO

In this study, diselenide (Se-Se) and disulfide (S-S) redox-responsive core-cross-linked (CCL) micelles were synthesized using poly(ethylene oxide)2k-b-poly(furfuryl methacrylate)1.5k (PEO2k-b-PFMA1.5k), and their redox sensitivity was compared. A single electron transfer-living radical polymerization technique was used to prepare PEO2k-b-PFMA1.5k from FMA monomers and PEO2k-Br initiators. An anti-cancer drug, doxorubicin (DOX), was incorporated into PFMA hydrophobic parts of the polymeric micelles, which were then cross-linked with maleimide cross-linkers, 1,6-bis(maleimide) hexane, dithiobis(maleimido) ethane and diselenobis(maleimido) ethane via Diels-Alder reaction. Under physiological conditions, the structural stability of both S-S and Se-Se CCL micelles was maintained; however, treatments with 10 mM GSH induced redox-responsive de-cross-linking of S-S and Se-Se bonds. In contrast, the S-S bond was intact in the presence of 100 mM H2O2, while the Se-Se bond underwent de-crosslinking upon the treatment. DLS studies revealed that the size and PDI of (PEO2k-b-PFMA1.5k-Se)2 micelles varied more significantly in response to changes in the redox environment than (PEO2k-b-PFMA1.5k-S)2 micelles. In vitro release studies showed that the developed micelles had a lower drug release rate at pH 7.4, whereas a higher release was observed at pH 5.0 (tumor environment). The micelles were non-toxic against HEK-293 normal cells, which revealed that they could be safe for use. Nevertheless, DOX-loaded S-S/Se-Se CCL micelles exhibited potent cytotoxicity against BT-20 cancer cells. Based on these results, the (PEO2k-b-PFMA1.5k-Se)2 micelles can be more sensitive drug carriers than (PEO2k-b-PFMA1.5k-S)2 micelles.

11.
ACS Appl Mater Interfaces ; 15(10): 12719-12734, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848457

RESUMO

The physiological instability of nanocarriers, premature drug leakage during blood circulation, and associated severe side effects cause compromised therapeutic efficacy, which have significantly hampered the progress of nanomedicines. The cross-linking of nanocarriers while keeping the effectiveness of their degradation at the targeted site to release the drug has emerged as a potent strategy to overcome these flaws. Herein, we have designed novel (poly(ethylene oxide))2-b-poly(furfuryl methacrylate) ((PEO2K)2-b-PFMAnk) miktoarm amphiphilic block copolymers by coupling alkyne-functionalized PEO (PEO2K-C≡H) and diazide-functionalized poly(furfuryl methacrylate) ((N3)2-PFMAnk) via click chemistry. (PEO2K)2-b-PFMAnk self-assembled to form nanosized micelles (mikUCL) with hydrodynamic radii in the range of 25∼33 nm. The hydrophobic core of mikUCL was cross-linked by a disulfide-containing cross-linker using the Diels-Alder reaction to avoid unwanted leakage and burst release of a payload. As expected, the resulting core-cross-linked (PEO2K)2-b-PFMAnk micelles (mikCCL) exhibited superior stability under a normal physiological environment and were de-cross-linked to rapidly release doxorubicin (DOX) upon exposure to a reduction environment. The micelles were compatible with HEK-293 normal cells, while DOX-loaded micelles (mikUCL/DOX and mikCCL/DOX) induced high antitumor activity in HeLa and HT-29 cells. mikCCL/DOX preferentially accumulated at the tumor site and was more efficacious than free DOX and mikUCL/DOX for tumor inhibition in HT-29 tumor-bearing nude mice.


Assuntos
Antineoplásicos , Micelas , Animais , Camundongos , Humanos , Polietilenoglicóis/química , Óxido de Etileno , Camundongos Nus , Células HEK293 , Doxorrubicina/química , Antineoplásicos/química , Oxirredução , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio
12.
Carbohydr Polym ; 303: 120457, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657844

RESUMO

In this work, bioorthogonal and photodegradable hydrogels derived from norbornene (Nb) functionalized hyaluronic acid and a water soluble coumarin-based cross-linker possessing terminal tetrazine (Tz) groups, were developed for NIR-responsive release of doxorubicin (DOX). The inverse electron demand Diels-Alder cross-linking reaction between Nb and Tz functionalities formed the hydrogels at physiological conditions, whereas N2 gas liberated during the reaction created pores in the hydrogels. The gelation time ranges (about 5-20 min) and the viscoelastic behavior (G' ~ 346-1380 Pa) demonstrated that the resulting hydrogels were injectable and possessed tunable mechanical properties. Moreover, hydrogels released the encapsulated DOX upon NIR irradiation, owing to the NIR-responsive cleavage of coumarin-ester, and consequently, induced anti-tumor activity in BT-20 cancer cells. Additionally, the hydrogels could be excited at various wavelengths of the visible spectrum and can emit green to red fluorescence, demonstrating their simultaneous photo-responsive drug release and bio-imaging applications.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/farmacologia , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Cumarínicos , Liberação Controlada de Fármacos
13.
Tissue Eng Regen Med ; 20(1): 83-92, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562983

RESUMO

BACKGROUND: The extracellular matrix (ECM) has many functions, such as segregating tissues, providing support, and regulating intercellular communication. Cartilage-derived ECM (CECM) can be prepared via consecutive processes of chemical decellularization and enzyme treatment. The purpose of this study was to improve and treat osteoarthritis (OA) using porcine knee articular CECM. METHODS: We assessed the rheological characteristics and pH of CECM solutions. Furthermore, we determined the effects of CECM on cell proliferation and cytotoxicity in the chondrocytes of New Zealand rabbits. The inhibitory effect of CECM on tumor necrosis factor (TNF)-α-induced cellular apoptosis was assessed using New Zealand rabbit chondrocytes and human synoviocytes. Finally, we examined the in vivo effects of CECM on inflammation control and cartilage degradation in an experimental OA-induced rat model. The rat model of OA was established by injecting monosodium iodoacetate into the intra-articular knee joint. The rats were then injected with CECM solution. Inflammation control and cartilage degradation were assessed by measuring the serum levels of proinflammatory cytokines and C-telopeptide of type II collagen and performing a histomorphological analysis. RESULTS: CECM was found to be biocompatible and non-immunogenic, and could improve cell proliferation without inducing a toxic reaction. CECM significantly reduced cellular apoptosis due to TNF-α, significantly improved the survival of cells in inflammatory environments, and exerted anti-inflammatory effects. CONCLUSION: Our findings suggest that CECM is an appropriate injectable material that mediates OA-induced inflammation.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Coelhos , Suínos , Cartilagem Articular/patologia , Osteoartrite/tratamento farmacológico , Condrócitos/metabolismo , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Matriz Extracelular/metabolismo
14.
Tissue Eng Regen Med ; 20(2): 213-223, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36502465

RESUMO

BACKGROUND: Eye irritation tests with animals have been conducted for a long time. However, the subjective decision to irritation, the anatomic/physiologic difference between species and humans, and ethical issues are crucial problems. Various research groups have paid attention to alternative testing methods. In these senses, we fabricated in vitro mini-cornea models with immortalized human corneal epithelial cells (iHCECs) and keratocytes (iHCKs) and used them for irritation tests. This study hypothesized that our mini-cornea model could present different viability tendencies according to test chemicals with different irritancy levels. METHODS: Cells used in this study were characterized with cornea-specific markers by immunocytochemistry and western blot. To make a three-dimensional hemisphere construct like cornea stroma, we cultured iHCKs under modified culture conditions verified by matrix formation and total collagen content. iHCECs were seeded on the construct and cultured at an air-liquid interface. The model was treated with 2-phenoxyethanol, triton X-100, sodium lauryl sulfate, and benzalkonium chloride. RESULTS: iHCECs and iHCKs presented their specific cell markers. In modifying the culture condition, the group treating ascorbic acid (200 µg/ml) presented an intact cellular matrix and included the highest collagen content; thus, we used this condition to fabricate the mini-cornea model. The model shows hemisphere shape and homogenous cell distributions in histological analysis. We observed different sensitivity tendencies by types of chemicals, and the model's viability significantly decreased when the chemical concentration increased. CONCLUSION: In this study, we performed and observed irritation tests using a tissue-engineered mini-cornea model and considered to apply as an alternative approach for animal tests.


Assuntos
Compostos de Benzalcônio , Córnea , Animais , Humanos , Octoxinol , Dodecilsulfato de Sódio
15.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295196

RESUMO

In this work, we engineered highly biocompatible and fast absorbent injectable hydrogels derived from norbornene (Nb)-functionalized hyaluronic acid (HA-Nb) and a water-soluble cross-linker possessing tetrazine (Tz) functional groups on both ends of polyethylene glycol (PEG-DTz). The by-product (nitrogen gas) of the inverse electron demand Diels−Alder (IEDDA) cross-linking reaction carved porosity in the resulting hydrogels. By varying the molar ratio of HA-Nb and PEG-DTz (Nb:Tz = 10:10, 10:5, 10:2.5), we were able to formulate hydrogels with tunable porosity, gelation time, mechanical strength, and swelling ratios. The hydrogels formed quickly (gelation time < 100 s), offering a possibility to use them as an injectable drug delivery system. The experimental data showed rapid swelling and a high swelling ratio thanks to the existence of PEG chains and highly porous architectures of the hydrogels. The hydrogels were able to encapsulate a high amount of curcumin (~99%) and released the encapsulated curcumin in a temporal pattern. The PEG-DTz cross-linker, HA-Nb, and the resulting hydrogels showed no cytotoxicity in HEK-293 cells. These fast absorbent hydrogels with excellent biocompatibility fabricated from HA-Nb and the IEDDA click-able cross-linker could be promising drug carriers for injectable drug delivery applications.

16.
Int J Biol Macromol ; 219: 109-120, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35931291

RESUMO

In this work, novel biocompatible and reduction-responsive soft hydrogels were formulated from norbornene (Nb)-functionalized carboxymethyl cellulose (CMCNb). To cross-link the CMC-Nb via a highly bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction, we employed a water-soluble and reduction-responsive diselenide-based cross-linker possessing two terminal tetrazine (Tz) groups with varying molar concentrations (Nb/Tz molar ratios of 10/10, 10/05, and 10/2.5). The N2 microbubbles liberated as a by-product during the IEDDA reaction generated in-situ pores in hydrogel networks. The resulting hydrogels had highly porous structures and relatively soft mechanical properties (storage moduli in the range 74 ⁓160 Pa). The hydrogels showed high swelling ratios (>35 times), tunable gelation times (1-5 min), and excellent doxorubicin (DOX) loading efficiencies (>85 %). The hydrogels exhibited stimuli-responsive and fast release of DOX (99 %, after 12 h) in the presence of 10 mmol of glutathione as compared to the normal PBS solution (38 %). The cytotoxic effects of blank hydrogels were not observed against HEK-239 cells, while the DOX-encapsulated hydrogels exhibited anti-tumor activity in BT-20 cancer cells. The results indicate potential applications of the CMC-based soft hydrogels in injectable drug delivery systems.


Assuntos
Hidrogéis , Neoplasias , Carboximetilcelulose Sódica/química , Química Click/métodos , Doxorrubicina/química , Elétrons , Glutationa , Hidrogéis/química , Neoplasias/tratamento farmacológico , Norbornanos/química , Água
17.
Tissue Eng Regen Med ; 19(6): 1237-1250, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35932427

RESUMO

BACKGROUND: In this study, we have investigated whether human fetal cartilage progenitor cells (hFCPCs) have anti-inflammatory activity and can alleviate osteoarthritis (OA) phenotypes in vitro. METHODS: hFCPCs were stimulated with various cytokines and their combinations and expression of paracrine factors was examined to find an optimal priming factor. Human chondrocytes or SW982 synoviocytes were treated with interleukin-1ß (IL-1ß) to produce OA phenotype, and co-cultured with polyinosinic-polycytidylic acid (poly(I-C))-primed hFCPCs to address their anti-inflammatory effect by measuring the expression of OA-related genes. The effect of poly(I-C) on the surface marker expression and differentiation of hFCPCs into 3 mesodermal lineages was also examined. RESULTS: Among the priming factors tested, poly(I-C) (1 µg/mL) most significantly induced the expression of paracrine factors such as indoleamine 2,3-dioxygenase, histocompatibility antigen, class I, G, tumor necrosis factor- stimulated gene-6, leukemia inhibitory factor, transforming growth factor-ß1 and hepatocyte growth factor from hFCPCs. In the OA model in vitro, co-treatment of poly(I-C)-primed hFCPCs significantly alleviated IL-1ß-induced expression of inflammatory factors such as IL-6, monocyte chemoattractant protein-1 and IL-1ß, and matrix metalloproteinases in SW982, while it increased the expression of cartilage extracellular matrix such as aggrecan and collagen type II in human chondrocytes. We also found that treatment of poly(I-C) did not cause significant changes in the surface marker profile of hFCPCs, while showed some changes in the 3 lineages differentiation. CONCLUSION: These results suggest that poly(I-C)-primed hFCPCs have an ability to modulate inflammatory response and OA phenotypes in vitro and encourage further studies to apply them in animal models of OA in the future.


Assuntos
Osteoartrite , Poli I-C , Animais , Humanos , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Cartilagem , Células-Tronco/metabolismo , Fenótipo
18.
Tissue Eng Regen Med ; 19(5): 969-986, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35857259

RESUMO

Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.


Assuntos
Infarto do Miocárdio , Engenharia Tecidual , Humanos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Tecnologia , Engenharia Tecidual/métodos
19.
Cell Tissue Res ; 389(2): 289-308, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35624315

RESUMO

Stem cells are known to have excellent regenerative ability, which is primarily facilitated by indirect paracrine factors, rather than via direct cell replacement. The regenerative process is mediated by the release of extracellular matrix molecules, cytokines, and growth factors, which are also present in the media during cultivation. Herein, we aimed to demonstrate the functionality of key factors and mechanisms in skin regeneration through the analysis of conditioned media derived from fetal stem cells. A series of processes, including 3D pellet cultures, filtration and lyophilization is developed to fabricate human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) and its useful properties are compared with those of human bone marrow-derived MSCs-conditioned media (hBMSCs-CM) in terms of biochemical characterization, and in vitro studies of fibroblast behavior, macrophage polarization, and burn wound healing. The hFCPCs-CM show to be devoid of cellular components but to contain large amounts of total protein, collagen, glycosaminoglycans, and growth factors, including IGFBP-2, IGFBP-6, HGF, VEGF, TGF ß3, and M-CSF, and contain a specific protein, collagen alpha-1(XIV) compare with hBMSCs-CM. The therapeutic potential of hFCPCs-CM observes to be better than that of hBMSCs-CM in the viability, proliferation, and migration of fibroblasts, and M2 macrophage polarization in vitro, and efficient acceleration of wound healing and minimization of scar formation in third-degree burn wounds in a rat model. The current study shows the potential therapeutic effect of hFCPCs and provides a rationale for using the secretome released from fetal progenitor cells to promote the regeneration of skin tissues, both quantitatively and qualitatively. The ready-to-use product of human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) are fabricated via a series of techniques, including a 3D culture of hFCPCs, filtration using a 3.5 kDa cutoff dialysis membrane, and lyophilization of the CM. hFCPCs-CM contains many ECM molecules and biomolecules that improves wound healing through efficient acceleration of M2 macrophage polarization and reduction of scar formation.


Assuntos
Queimaduras , Células-Tronco Fetais , Animais , Queimaduras/patologia , Queimaduras/terapia , Cicatriz/patologia , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Fetais/metabolismo , Fibroblastos/metabolismo , Humanos , Ratos , Pele/patologia , Células-Tronco , Cicatrização
20.
Carbohydr Polym ; 288: 119389, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450650

RESUMO

A novel physically and chemically double-crosslinked hydrogel derived from chitosan oligosaccharide/alginate (COS/Alg) was developed by using norbornene (Nb)-tetrazine (Tz) click reaction for ketoprofen delivery. The properties of the hydrogel were evaluated by rheological, FTIR, TGA, XRD, SEM, swelling and drug release studies. The Nb-Tz chemical cross-linking facilitated outstanding hydrophobic drug loading (44% wt/wt of ketoprofen) and sustained release through a hydrophobic interaction mechanism between the drug and the used polysaccharides. The COS/Alg electrostatics network (10/10 of NH2/COOH molar ratio) generated the pH responsiveness, suppressing the release in simulated gastric fluid (below 10% for 2 h) and enhancing the release in simulated intestinal fluids (up to 84% for 24 h). The prepared hydrogel was non-toxic to human HEK-293 cells (95% cell viability). This work opens up a potential approach for preparing hydrophilic hydrogels from natural polysaccharides that can be used in the delivery of hydrophobic drugs.


Assuntos
Quitosana , Cetoprofeno , Alginatos/química , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células HEK293 , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Nióbio , Norbornanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...